
CHANGE OF BASE FOR ENRICHED MODEL CATEGORIES

ALEXANDER CAMPBELL

Abstract. In this talk we review the change of base theorem for enriched model categories,
which states that the change of base of a V-enriched model category along the right ad-
joint V −→ W of a monoidal Quillen adjunction (whose left adjoint is strong monoidal) is a
W-enriched model category. A novelty of our exposition is that we define an enriched cat-
egory to be a category with extra structure, rather than as an independent structure from
which an underlying category is derived. We draw on higher category theory for examples and
counterexamples.

In this talk we review the change of base theorem for enriched model categories (see for
instance [GM11, Proposition 3.8]):

Theorem. Let S a T : V −→ W be a monoidal Quillen adjunction between monoidal model
categories. If (A,A) is a model V-category, then (A, T∗A) is a model W-category with the same
underlying model category as (A,A).

An enriched category can be equivalently conceived either as a category with extra structure
or as an independent structure from which an underlying category is derived (in [GM11] this
distinction is described as being that between thinking of “enriched” as an adjective modifying
the noun “category” and thinking of “enriched category” as a noun). While it is the latter
point of view that is usually taken in the standard references on enriched category theory
(for instance [Kel05]), the former is often more convenient when working with enriched model
categories, which are categories equipped with compatible model and enrichment structures
[Hov99]. Therefore, for the purposes of this talk, we adopt the following definition of enriched
category.

Definition 1. Let (V ,⊗, I) be a monoidal category. A V-enrichment (A,M, j) of a category
A consists of the following data:

(i) a functor A(−,−) : Aop ×A −→ V ,
(ii) a natural transformation M : A(B,C)⊗A(A,B) −→ A(A,C), and

(iii) a natural transformation j : I −→ A(A,A),

subject to the usual associativity and left and right unit axioms and to a further normality
axiom, which states that the composite function

A(A,B)
A(A,−)

// V(A(A,A),A(A,B))
V(jA,1)

// V(I,A(A,B)) (1)

is a bijection for each pair of objects A,B ∈ A.
A category A equipped with a V-enrichment (A,M, j) is called a V-category.

Furthermore, we can define a 2-category V-Cat of V-categories, V-functors, and V-natural
transformations, where a V-functor (F, F ) : (A,A) −→ (B,B) consists of a functor F : A −→ B
and a natural transformation F : A(A,B) −→ B(FA, FB) subject to the usual composition and
unit axioms, and where a V-natural transformation θ : (F, F ) −→ (G,G) is a natural transfor-
mation θ : F −→ G subject to the usual enriched naturality axiom. This 2-category is equivalent
to the 2-category of V-categories as it is usually defined (as in [Kel05]; see [Cam18, Corollary
2.14] for a proof of this equivalence). Moreover, there is an evident 2-functor V-Cat −→ Cat
that sends a V-category (A,A) to its underlying category A.
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Recall that a monoidal functor (T, ϕ, ϕ0) : (V ,⊗, I) −→ (W ,⊗, I) between monoidal cate-
gories consists of a functor T : V −→ W , a natural transformation ϕ : TX⊗TY −→ T (X⊗Y ),
and a morphism ϕ0 : I −→ TI, subject to associativity and left and right unit axioms. For
each monoidal functor T : V −→ W , there is a “change of base” 2-functor V-Cat −→ W-Cat
defined in [EK66], which sends each V-category to a W-category. This construction does not
preserve underlying categories in general; for the purposes of this talk, we restrict attention to
change of base along those monoidal functors that do preserve underlying categories.

Definition 2. A monoidal functor (T, ϕ, ϕ0) : V −→ W is said to be pronormal if the composite
function

V(I,X)
T

//W(TI, TX)
W(ϕ0,1)

//W(I, TX) (2)

is a bijection for each object X ∈ V .

(Note that such monoidal functors are called “normal” in [Kel74], but this conflicts with
modern usage.)

Proposition 3. Let (T, ϕ, ϕ0) : V −→ W be a pronormal monoidal functor. For each
V-enrichment A = (A,M, j) of a category A, the following data define a W-enrichment T∗A
of A, called the change of base of A along T :

(i) hom-functor

Aop ×A
A(−,−)

// V T
//W ,

(ii) composition natural transformation

TA(B,C)⊗ TA(A,B)
ϕ
// T (A(B,C)⊗A(A,B))

TM
// TA(A,C),

(iii) unit natural transformation

I
ϕ0
// TI

Tj
// TA(A,A).

Moreover, this defines the action on objects of a 2-functor T∗ : V-Cat −→ W-Cat that
commutes with the underlying 2-functors to Cat.

Proof. The proof follows that of [EK66, Proposition II.6.3]. It remains only to verify the
normality axiom (1) for T∗A. This is proved by the following commutative diagram,

A(A,B)
A(A,−)

//

∼= ))

V(A(A,A),A(A,B))
T

//

V(j,1)
��

W(TA(A,A), TA(A,B))

W(Tj,1)
��

V(I,A(A,B))
T

//

∼= ++

W(TI, TA(A,B))

W(ϕ0,1)

��

W(I, TA(A,B))

whose rectangular region commutes by functoriality of T , and whose two diagonal composites
are isomorphisms by the assumptions of normality of A and pronormality of T . �

We will see in Theorem 8 that change of base is best behaved along the right adjoint of a
monoidal adjunction between biclosed monoidal categories. A monoidal adjunction is defined
to be an adjunction in the 2-category of monoidal categories, monoidal functors, and monoidal
natural transformations [EK66]. Note that the left adjoint of a monoidal adjunction is neces-
sarily strong monoidal, meaning that its monoidal constraints ϕ and ϕ0 are invertible; this is
an instance of doctrinal adjunction [Kel74]. In particular, we have the following result [Kel74,
Proposition 2.1].

Proposition 4. The right adjoint of a monoidal adjunction is pronormal.
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Proof. Let S a T : V −→ W be a monoidal adjunction with unit η : 1W −→ TS. Consider the
following commutative diagram,

V(SI,X)
T

//

V(ϕ0,1)

��

W(TSI, TX)
W(ηI ,1)

//

W(Tϕ0,1)

��

W(I, TX)

V(I,X)
T

//W(TI, TX)
W(ϕ0,1)

//W(I, TX)

whose left-hand region commutes by functoriality of T and whose right-hand region commutes
since η : 1W −→ TS is a monoidal natural transformation. By definition, T is pronormal if
the bottom composite is a bijection; this follows because the top composite is a bijection by
adjointness and the left-hand vertical arrow is a bijection since S is strong monoidal. �

Hence we can define change of base along the right adjoint of a monoidal adjunction as in
Proposition 3.

A monoidal category is said to be biclosed if its tensor product functor has a right adjoint in
each variable.

V(Y, 〈X,Z〉) ∼= V(X ⊗ Y, Z) ∼= V(X, [Y, Z]) (3)

In particular, for a V-category (A,A), the composition morphisms

A(B,C)⊗A(A,B)
M
// A(A,C)

correspond under the bijections (3) to the morphisms which we denote as follows.

A(B,C)
A(A,−)

// [A(A,B),A(A,C)] A(A,B)
A(−,C)

// 〈A(B,C),A(A,C)〉

Definition 5. Let V be a biclosed monoidal category. Recall (for instance from [Kel69]) that
a V-category A is tensored if for each pair of objects X ∈ V and A ∈ A, there exists an object
X ∗ A ∈ A and a morphism d : X −→ A(A,X ∗ A) in V such that the composite morphism

A(X ∗ A,B)
A(A,−)

// [A(A,X ∗ A),A(A,B)]
[d,1]

// [X,A(A,B)] (4)

is an isomorphism in V for every object B ∈ A.
A V-category (A,A) is cotensored if its opposite Vrev-category (Aop,Aop) is tensored, i.e. if

for each pair of objects X ∈ V and B ∈ A, there exists an object X t B ∈ A and a morphism
c : X −→ A(X t B,B) such that the composite morphism

A(A,X t B)
A(−,B)

// 〈A(X t B,B),A(A,B)〉
〈c,1〉

// 〈X,A(A,B)〉

is an isomorphism in W for every object A ∈ A.

The following well known theorem goes back in part to [Kel69, §5]. First we need a lemma.
[Recall that the 2-category of closed monoidal categories is equivalent to the 2-category of
monoidal closed categories.]

Lemma 6. Let S a T : V −→ W be a monoidal adjunction between closed monoidal categories.
For each pair of objects X ∈ V and Y ∈ W , the composite morphism

T [SY,X]
ψ
// [TSY, TX]

[η,1]
// [Y, TX] (5)

is an isomorphism in W.

Proof. We show that the composite

[Y, TX]
η
// TS[Y, TX]

Tψ
// T [SY, STX]

T [1,ε]
// T [SY,X]

is inverse to (5). This is shown by the commutativity of the following diagrams, where we
use that η : 1 −→ TS and ε : ST −→ 1 are closed natural transformations. Observe that the
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triangle identities of the adjunction S a T imply that certain sides of the following diagrams
are identities.

T [SY,X]
ψ

//

η

��

[TSY, TX]

η

��

[η,1]
// [Y, TX]

η

��

TST [SY,X]

Tε

��

TSψ
// TS[TSY, TX]

Tψ
��

TS[η,1]
// TS[Y, TX]

Tψ
��

T [STSY, STX]

T [1,ε]

��

T [Sη,1]
// T [SY, STX]

T [1,ε]

��

T [SY,X]
T [ε,1]

// T [STSY,X]
T [Sη,1]

// T [SY,X]

TS[Y, TX]
Tψ

// T [SY, STX]

ψ

��

T [1,ε]
// T [SY,X]

ψ

��

[TSY, TSTX]

[η,1]
��

[1,T ε]
// [TSY, TX]

[η,1]
��

[Y, TX]

η

OO

[1,η]
// [Y, TSTX]

[1,T ε]
// [Y, TX]

�

Remark 7. This lemma proves moreover that the monoidal adjunction S a T : V −→ W
between closed monoidal categories induces a W-enriched adjunction Š a T̂ : (V , T∗V) −→
(W ,W), where (U ,U) denotes the self-enrichment of a closed monoidal category U .

Theorem 8. Let S a T : V −→ W be a monoidal adjunction between biclosed monoidal cat-
egories. If (A,A) is a tensored and cotensored V-category, then (A, T∗A) is a tensored and
cotensored W-category, with tensors Y ∗ A = SY ∗ A and cotensors Y t B = SY t B.

Proof. We first prove that (A, T∗A) is a tensored W-category. The proof that it is coten-
sored then follows by duality, since change of base commutes with taking opposite cate-
gories (note that the monoidal adjunction S a T : V −→ W induces a monoidal adjunction
Srev a T rev : Vrev −→Wrev between their reverse duals.)

Let Y ∈ W and A ∈ A. We show that SY ∗ A defines a W-enriched tensor product in
(A, T∗A) with unit given by the following composite morphism in W .

Y
η
// TSY

Td
// TA(A, SY ∗ A)

This is proved by the following commutative diagram,

TA(SY ∗ A,B)
TA(A,−)

//

∼= **

T [A(A, SY ∗ A),A(A,B)]

T [d,1]

��

ψ
// [TA(A, SY ∗ A), TA(A,B)]

[Td,1]

��

T [SY,A(A,B)]
ψ

//

∼= ++

[TSY, TA(A,B)]

[η,1]
��

[Y, TA(A,B)]

whose rectangular region commutes by naturality of the closed functor constraint ψ, and whose
diagonal composites are isomorphisms by the universal property (4) of the tensor product SY ∗A
in the V-category (A,A) and by Lemma 6. �
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Remark 9. One can give an alternative proof of Theorem 8 using Remark 7 and the fact that a
V-category (A,A) is tensored if and only if every representable V-functor
A(A,−) : (A,A) −→ (V ,V) has a V-enriched left adjoint, or by using the enriched Yoneda
lemma and the fact that the left adjoint of a monoidal adjunction is strong monoidal.

We refer to [Hov99] for the notions of monoidal model category and monoidal Quillen ad-
junction, and for the notion of enriched model category, which we now recall.

Definition 10. Let V be a monoidal model category and let A be a complete and cocomplete
category. A V-enriched model structure on A consists of:

(i) a model structure on A,
(ii) a tensored and cotensored V-enrichment A of A,

such that for each cofibration u : A −→ B and fibration f : X −→ Y in A, the Leibniz hom

A(̂u, f) is a fibration in V , and is moreover a trivial fibration if either u or f is a weak equiva-
lence.

A(B,X) A(1,f)

''

A(̂u,f)
''

A(u,1)

%%

[2,A](u, f) //

��

A(B, Y )

A(u,1)
��

A(A,X)
A(1,f)

// A(A, Y )

A complete and cocomplete category equipped with a V-enriched model structure is called a
V-enriched model category or simply a model V-category.

We now prove the change of base theorem for enriched model categories, with which we
opened this talk.

Theorem 11. Let S a T : V −→ W be a monoidal Quillen adjunction between monoidal model
categories. If (A,A) is a model V-category, then (A, T∗A) is a model W-category with the same
underlying model category as (A,A).

Proof. By Theorem 8, (A, T∗A) is a tensored and cotensored W-category with the same un-
derlying category A as (A,A), which by assumption is complete and cocomplete and equipped
with a model structure. Hence it remains to show that this model structure is compatible with
the W-enrichment T∗A defined by change of base along T .

Let u : A −→ B be a cofibration and f : X −→ Y a fibration in A. By the definition of the

W-enrichment T∗A, and since T preserves pullbacks, we have that the Leibniz hom (T∗A)(̂u, f)

is isomorphic in the arrow category W2 to T (A(̂u, f)). But the Leibniz hom A(̂u, f) is a
fibration in V , and is a trivial fibration if either u or f is a weak equivalence, since (A,A) is a

model V-category. Hence (T∗A)(̂u, f) is a fibration in W , and is a trivial fibration if either u
or f is a weak equivalence in A, since T preserves fibrations and trivial fibrations. Therefore
(A, T∗A) is a model W-category. �
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