On weighted homotopy limits in Kan-enriched categories

Alexander Campbell

Australian National University

Australian Category Seminar 26 May 2021

## Weighted limits as conical limits

This talk concerns a generalisation of the following classical result.

### Proposition

Let  $W : \mathcal{A} \longrightarrow \textbf{Set}$  and  $F : \mathcal{A} \longrightarrow \mathcal{C}$  be functors. Then we have

$$\{W, F\} \cong \lim \left( \operatorname{el}(W) \xrightarrow{P} \mathcal{A} \xrightarrow{F} \mathcal{C} \right),$$

either side existing if the other does.

More generally, weighted homotopy limits in Kan-enriched categories can be expressed as conical homotopy limits by means of Lurie's "unstraightening" construction (which is an  $\infty$ -categorical generalisation of the classical "category of elements" construction).

A version of this result was proved in Martina Rovelli's recently published paper on 'Weighted limits in an  $(\infty, 1)$ -category' (Applied Categorical Structures, 2021).

In this talk, I will give a much simpler, direct proof of a slightly stronger result.

## 2 Straightening

3 Weighted homotopy limits as conical homotopy limits

2 Straightening

3) Weighted homotopy limits as conical homotopy limits

## Weighted limits in simplicially-enriched categories

For the remainder of this talk, we will work in the setting of simplicially-enriched category theory.

### Definition (weighted limits)

Let  $W: \mathcal{A} \longrightarrow \mathbf{sSet}$  and  $F: \mathcal{A} \longrightarrow \mathcal{C}$  be simplicial functors. A *limit of* F *weighted* by W is an object  $\{W, F\} \in \mathcal{C}$ , together with a simplicial natural transformation  $W \longrightarrow \mathcal{C}(\{W, F\}, F-)$ , such that the induced map

$$\mathcal{C}(\mathcal{C}, \{W, F\}) \xrightarrow{\cong} \operatorname{Nat}(W, \mathcal{C}(\mathcal{C}, F-))$$

is an isomorphism of simplicial sets for every object  $C \in C$ .

Now suppose C is a Kan-enriched category. We can adapt the above definition to give a notion of "weighted homotopy limit" in C by:

- replacing the simplicial natural transformations by "pseudo-natural transformations", and
- **2** replacing the defining isomorphism by an equivalence of Kan complexes.

To achieve step (1), we use the notion of "flexible weight".

Let  ${\mathcal A}$  be a small simplicial category.

### Recall (projective model structure)

The simplicial functor category  $Fun(\mathcal{A}, sSet)$  admits a model structure – called the *projective model structure* – in which a simplicial natural transformation  $\theta: F \longrightarrow G$  is:

- a weak equivalence if θ<sub>A</sub>: FA → GA is a weak homotopy equivalence for every A ∈ A;
- a *(trivial) fibration* if  $\theta_A : FA \longrightarrow GA$  is a (trivial) Kan fibration for every  $A \in \mathcal{A}$ ;
- a *cofibration* if it has the LLP wrt every projective trivial fibration.

In particular, a simplicial functor  $F : \mathcal{A} \longrightarrow \mathbf{sSet}$  is a fibrant object in the projective model structure iff it takes values in Kan complexes.

## Definition (flexible weight)

A simplicial functor  $W: \mathcal{A} \longrightarrow \mathbf{sSet}$  is *flexible* if it is a cofibrant object in the projective model structure on  $\mathbf{Fun}(\mathcal{A}, \mathbf{sSet})$ , i.e. if it has the LLP wrt every projective trivial fibration.

### Definition (flexible replacement)

A flexible replacement of a weight  $W \colon \mathcal{A} \longrightarrow \mathbf{sSet}$  is a flexible weight

 $W^c \colon \mathcal{A} \longrightarrow \mathbf{sSet}$  together with a weak equivalence  $W^c \stackrel{\sim}{\longrightarrow} W$ .

The projective model structure on Fun(A, sSet) is compatible with its standard simplicial enrichment. In particular, we have:

#### Proposition

Suppose that  $W : \mathcal{A} \longrightarrow \mathbf{sSet}$  is a flexible weight and that  $F : \mathcal{A} \longrightarrow \mathbf{sSet}$  is valued in Kan complexes. Then the simplicial set  $\mathbf{Nat}(W, F)$  of simplicial natural transformations from W to F is a Kan complex.

Let  ${\mathcal A}$  be a small simplicial category and  ${\mathcal C}$  a Kan-enriched category.

### Definition (weighted homotopy limit)

Let  $W: \mathcal{A} \longrightarrow \mathbf{sSet}$  and  $F: \mathcal{A} \longrightarrow \mathcal{C}$  be simplicial functors. A homotopy limit of F weighted by W is an object  $\{W, F\}_{ho}$  of  $\mathcal{C}$ , together with a simplicial natural transformation  $W^c \longrightarrow \mathcal{C}(\{W, F\}_{ho}, F-)$  from a flexible replacement of W, such that the induced map

$$\mathcal{C}(C, \{W, F\}_{ho}) \xrightarrow{\sim} \mathsf{Nat}(W^c, \mathcal{C}(C, F-))$$

is an equivalence of Kan complexes for every object  $C \in C$ .

#### Definition (conical homotopy limit)

Let  $F: \mathcal{A} \longrightarrow \mathcal{C}$  be a simplicial functor. A *conical homotopy limit* of F is a homotopy limit of F weighted by the terminal weight  $\Delta 1: \mathcal{A} \longrightarrow \mathbf{sSet}$ .

We will denote a conical homotopy limit of F by holim F. By definition, it has the homotopical universal property:

$$\mathcal{C}(\mathcal{C}, \operatorname{holim} \mathcal{F}) \simeq \operatorname{Nat}((\Delta 1)^c, \mathcal{C}(\mathcal{C}, \mathcal{F}-)).$$



3) Weighted homotopy limits as conical homotopy limits

# The straightening theorem

### Recall (homotopy coherent realisation)

The homotopy coherent realisation functor  $\mathfrak{C}$ : **sSet**  $\longrightarrow$  **sSet-Cat** is the cocontinuous extension of the functor  $\mathfrak{C}$ :  $\Delta \longrightarrow$  **sSet-Cat** that sends [*n*] to the "homotopy coherent *n*-simplex". It is left adjoint to the homotopy coherent nerve functor.

### Theorem (Lurie)

For every simplicial set B, the straightening-unstraightening adjunction

$$\mathsf{Fun}(\mathfrak{C}(B),\mathsf{sSet}) \xrightarrow[]{St_B}{} \mathsf{sSet}/B$$

is a Quillen equivalence between the projective model structure on  $Fun(\mathfrak{C}(B), \mathbf{sSet})$ and the covariant model structure on  $\mathbf{sSet}/B$ .

### Corollary

For every simplicial functor  $W : \mathfrak{C}(B) \longrightarrow \operatorname{Kan}$ , the counit morphism  $St_B(Un_B(W)) \xrightarrow{\sim} W$  witnesses the weight  $St_B(Un_B(W))$  as a flexible replacement of W.

Alexander Campbell (ANU)

## Straightening via left Kan extension

We can describe the straightening construction in the following two steps.

### Observation (the fundamental weight)

Let X be a simplicial set. The straightening of the the terminal object  $1_X \colon X \longrightarrow X$  of  $\mathbf{sSet}/X$  is the composite simplicial functor

$$\mathfrak{C}(X) \longrightarrow \mathfrak{C}(X^{\triangleleft}) \xrightarrow{\operatorname{\mathsf{Hom}}_{\mathfrak{C}(X^{\triangleleft})}(\bot,-)} \mathbf{sSet},$$

which sends an object  $x \in \mathfrak{C}(X)$  to the simplicial hom-set  $\operatorname{Hom}_{\mathfrak{C}(X^{\triangleleft})}(\bot, x)$ . We call it the *fundamental weight* of X and denote it by  $L_X : \mathfrak{C}(X) \longrightarrow \mathbf{sSet}$ .

### Proposition

Let  $p: X \longrightarrow B$  be a morphism of simplicial sets. Its straightening  $St_B(X, p): \mathfrak{C}(B) \longrightarrow \mathbf{sSet}$  is the simplicial left Kan extension of the fundamental weight  $L_X: \mathfrak{C}(X) \longrightarrow \mathbf{sSet}$  along the simplicial functor  $\mathfrak{C}(p): \mathfrak{C}(X) \longrightarrow \mathfrak{C}(B)$ .

$$\mathfrak{C}(X) \xrightarrow{\mathfrak{C}(p)} \mathfrak{C}(B)$$

$$\downarrow_{X} \xrightarrow{Lan} f_{St_B(X,p)}$$
sSet

2 Straightening

3 Weighted homotopy limits as conical homotopy limits

## Conical homotopy limits and straightening

Recall the corollary to the straightening theorem.

### Corollary

For every simplicial functor  $W : \mathfrak{C}(B) \longrightarrow \mathbf{Kan}$ , the counit morphism  $St_B(Un_B(W)) \longrightarrow W$  witnesses the weight  $St_B(Un_B(W))$  as a flexible replacement of W.

In particular, taking W to be the terminal weight yields:

#### Proposition

For every simplicial set X, the fundamental weight  $L_X : \mathfrak{C}(X) \longrightarrow \mathbf{sSet}$  is a flexible replacement of the terminal weight  $\Delta 1 : \mathfrak{C}(X) \longrightarrow \mathbf{sSet}$ .

Hence, by the definition of conical homotopy limits, we have:

#### Proposition

Let X be a simplicial set, C a Kan-enriched category, and  $F: \mathfrak{C}(X) \longrightarrow C$  a simplicial functor. Then we have

$$\{L_X, F\}_{ho} \simeq \operatorname{holim} F$$

either side existing if the other does.

## Weighted homotopy limits and left Kan extensions

We will use the following homotopical version of a standard result, which expresses the cocontinuity of weighted limits in the weight.

### Proposition

Let  $K: \mathcal{A} \longrightarrow \mathcal{B}$  be a simplicial functor between small simplicial categories, and let  $W: \mathcal{A} \longrightarrow sSet$  be a flexible weight. Then for any Kan-enriched category  $\mathcal{C}$  and simplicial functor  $F: \mathcal{B} \longrightarrow \mathcal{C}$ , we have

 $\{\operatorname{Lan}_{K}W,F\}_{ho}\simeq\{W,FK\}_{ho},$ 

either side existing if the other does.

### Proof.

The functor  $\operatorname{Lan}_{\mathcal{K}}$ :  $\operatorname{Fun}(\mathcal{A}, \operatorname{sSet}) \longrightarrow \operatorname{Fun}(\mathcal{B}, \operatorname{sSet})$  preserves flexible weights because its right adjoint  $\operatorname{res}_{\mathcal{K}}$ :  $\operatorname{Fun}(\mathcal{B}, \operatorname{sSet}) \longrightarrow \operatorname{Fun}(\mathcal{A}, \operatorname{sSet})$  preserves projective trivial fibrations. By the universal property of simplicial left Kan extensions, we have the natural isomorphism  $\operatorname{Nat}(\operatorname{Lan}_{\mathcal{K}} W, \mathcal{C}(\mathcal{C}, \mathcal{F}-)) \cong \operatorname{Nat}(W, \mathcal{C}(\mathcal{C}, \mathcal{F}\mathcal{K}-))$ . Hence, if the weighted homotopy limit  $\{\operatorname{Lan}_{\mathcal{K}} W, \mathcal{F}\}_{ho}$  exists, it also has the universal property of the weighted homotopy limit  $\{W, \mathcal{F}\mathcal{K}\}_{ho}$ , and vice versa.  $\Box$ 

# Weighted homotopy limits as conical homotopy limits

#### Theorem

Let B be a simplicial set,  $W : \mathfrak{C}(B) \longrightarrow \mathbf{sSet}$  a weight, and let  $p : Un_B(W^f) \longrightarrow B$ denote the unstraightening of a projective fibrant replacement of W. Also, let C be a Kan-enriched category and  $F : \mathfrak{C}(B) \longrightarrow C$  a simplicial functor. Then we have

$$\{W, F\}_{ho} \simeq \operatorname{holim}\left( \mathfrak{C}(Un_B(W^f)) \xrightarrow{\mathfrak{C}(p)} \mathfrak{C}(B) \xrightarrow{F} \mathcal{C} \right),$$

either side existing if the other does.

### Proof.

$$\{W, F\}_{ho} \simeq \{St_B Un_B(W^f), F\}_{ho} \simeq \{L_{Un_B(W^f)}, F \circ \mathfrak{C}(p)\}_{ho} \simeq \operatorname{holim}(F \circ \mathfrak{C}(p))$$

### Remark

More generally, let *B* be a simplicial set, *B* a simplicial category, and  $\phi : \mathfrak{C}(B) \longrightarrow \mathcal{B}$  a DK-equivalence. Then one can express homotopy limits weighted by simplicial functors  $\mathcal{B} \longrightarrow \mathbf{sSet}$  in terms of the unstraightening construction  $Un_{\phi}$  relative to  $\phi$ .